Polymerase and Exonuclease Activities in Herpes Simplex Virus Type 1 DNA Polymerase Are Not Highly Coordinated

نویسندگان

  • Ashwani Kumar Vashishtha
  • Robert D. Kuchta
چکیده

The herpes polymerase-processivity factor complex consists of the catalytic UL30 subunit containing both polymerase and proofreading exonuclease activities and the UL42 subunit that acts as a processivity factor. Curiously, the highly active exonuclease has minimal impact on the accumulation of mismatches generated by the polymerase activity. We utilized a series of oligonucleotides of defined sequence to define the interactions between the polymerase and exonuclease active sites. Exonuclease activity requires unwinding of two nucleotides of the duplex primer-template. Surprisingly, even though the exonuclease rate is much higher than the rate of DNA dissociation, the exonuclease degrades both single- and double-stranded DNA in a nonprocessive manner. Efficient proofreading of incorrect nucleotides incorporated by the polymerase would seem to require efficient translocation of DNA between the exonuclease and polymerase active sites. However, we found that translocation of DNA from the exonuclease to polymerase active site is remarkably inefficient. Consistent with inefficient translocation, the DNA binding sites for the exonuclease and polymerase active sites appear to be largely independent, such that the two activities appear noncoordinated. Finally, the presence or absence of UL42 did not impact the coordination of the polymerase and exonuclease activities. In addition to providing fundamental insights into how the polymerase and exonuclease function together, these activities provide a rationale for understanding why the exonuclease minimally impacts accumulation of mismatches by the purified polymerase and raise the question of how these two activities function together in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of Herpes Simplex Virus Type 1 DNA in Latently Infected BALB/c Mice Neurons Using in situ Polymerase Chain Reaction

Background: Herpes simplex virus type-1 (HSV-1) establishes a lifelong latent infection in neurons following primary infection. The existence of latent HSV-1 DNA in the trigeminal ganglia of infected BALB/c mice was examined using a direct in situ PCR technique, based on Digoxigenin-11-dUTP detection system with anti-digoxigenin-peroxidase and 3,3'-diaminobenzidine (DAB) substrate. Methods: Eig...

متن کامل

Processing of lagging-strand intermediates in vitro by herpes simplex virus type 1 DNA polymerase.

The processing of lagging-strand intermediates has not been demonstrated in vitro for herpes simplex virus type 1 (HSV-1). Human flap endonuclease-1 (Fen-1) was examined for its ability to produce ligatable products with model lagging-strand intermediates in the presence of the wild-type or exonuclease-deficient (exo(-)) HSV-1 DNA polymerase (pol). Primer/templates were composed of a minicircle...

متن کامل

Effects of mutations in the Exo III motif of the herpes simplex virus DNA polymerase gene on enzyme activities, viral replication, and replication fidelity.

The herpes simplex virus DNA polymerase catalytic subunit, which has intrinsic polymerase and 3'-5' exonuclease activities, contains sequence motifs that are homologous to those important for 3'-5' exonuclease activity in other polymerases. The role of one such motif, Exo III, was examined in this study. Mutated polymerases containing either a single tyrosine-to-histidine change at residue 577 ...

متن کامل

Kinetic Approaches to Understanding the Mechanisms of Fidelity of the Herpes Simplex Virus Type 1 DNA Polymerase

We discuss how the results of presteady-state and steady-state kinetic analysis of the polymerizing and excision activities of herpes simplex virus type 1 (HSV-1) DNA polymerase have led to a better understanding of the mechanisms controlling fidelity of this important model replication polymerase. Despite a poorer misincorporation frequency compared to other replicative polymerases with intrin...

متن کامل

Herpes Simplex Virus and Langerhans Cell Histiocytosis

Background and objective: Langerhans cell histiocytosis (LCH) is a rare histiocytic proliferative disorder of unknown etiology and mainly affects young children. The histological feature is granuloma-like proliferation of langerhans-type dendritic cells. Although the possible role of viruses such as Epstein-Barr virus (EBV, Human Herpes virus -4</...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2015